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and 6. 16-dB nominal coupling. The measured results at the

four output ports are within the specified toleration devia-

tions from nominal and flatness of coupling, which was the

case for all of the various power divider assemblies. Similar

characteristics for a five-way power divider are shown in Fig.

6. It is interesting to note how the coupling variation at any

output port depends on the particular path taken by the sig-

nal. For example, this explains why the coupling to port 3 of

the five-way power divider is so flat, the signal reaching this

port by coupling “across” the 1.52-dB coupler but “through”

the 3. 12-dB coupler, hence being attenuated by couplings

whose frequency characteristics tend to cancel. Ports 2 and 4

of this assembly each have 6-dB nominal coupling, and the

shape of the coupling characteristics in these cases may be

explained on a similar basis.

The couplers and power dividers were constructed in

aluminum and their physical form and construction is indi-

cated in Fig. 7. All 23 power dividers met specification with

no empirical adjustments being required. This is an example

of how precise computer design for components facilitates

design of a complex assembly.

CONCLUSIONS

Branch-guide couplers having tight-coupling values may

be designed directly, without cascading two or more couplers

of looser coupling, by using the new design theory based on

Zolotarev functions. This method enables the internal imped-

ance levels of the main lines and branch guides to be opti-

mized so that they may be physically constructeci, and this

A Least-Squares Boundary

Numerical Solution of

may be carried out with very little theoretical deterioration in

directivity and VSWR. Almost perfect correlation between

theory (taking junction effects into account) and experiment

has been obtained in measurements performed on over 100

branch-guide couplers. The design of a complex matched

power divider network direct from computer programs to

hardware was described with complete agreement between

computations and measured results.
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Residual Method for the

Scattering Problems

J. BRIAN DAVIES

Abstract—An explicit least-squares criterion is put forward as an

alternative to the point-matchmg method of numerically solving
scattering problems. While being an established method of func-
tional approximation, it has been largely ignored in numerical ap-
proaches to electromagnetic scattering.

In contrast to point matching, the least-squares approach has a
rigorous proof of convergence. An electric/magnetic weighting f act or
is found useful in opt~lzing convergence. Finally, it al[lows use of
perhaps the fastest and most compact matrix inversion algorithm.
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I. INTRODUCTION

A

NEW NUMERICAL approach is proposed for solv-

ing problems of electromagnetic wave scattering. Its

justification and potential is described mainly by

comparison with the point-matching (or collocation) method,

which has received much attention lately.

In point matching, Fourier matching, and the proposed

least-squares approaches, advantage is taken of the fact that

one can easily satisfy the differential equations of the prob-

lem. By using, over each of a number of regions, truncated

series from complete expansions, the problem is reduced to

satisfying boundary conditions (and possibly edge or radiation
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conditions) over certain interfaces. These interfaces may be

physical ones, such as conducting or dielectric surfaces or

ones of mathematical convenience that ‘{join up” different

regions each with its own complete expansion.

The boundary residual [1] wedefine around the boundary

as a function R(s) that is a linear combination of the total

electromagnetic field expansions in adjacent regions such that

the vanishing of R(s) is a necessary (and preferably sufficient)

condition for the unique physical solution to the problem.

Different criteria are now put forward to approximately

satisfy R(s) = O.

The simplest method is undoubtedly point matching [2],

where R(s) is made to vanish at a finite number of selected

points, so that

I?(S,) = R(S2) = R(S3) . . . = R(s.) = o. (1)

Perhaps the fundamental difficulty with this method is the

tacit assumption of convergence with increasing number of

points. This is especially questionable with sharp corners, due

to their singular fields [3]. In the associated topic of interpo-

lation polynomials, it is known that the error can be un-

bounded when the equidistant points become dense even

when approximating a smooth bounded function [4]. Rela-

tive convergence [8] can also cause difficulties so that gen-

eral application of the method seems rather precarious.

The proposed “least-squares boundary residual” method is

to require that for any given set of truncated series, the resid-

ual be minimized in the usual least-squares sense over the

boundary, viz.,

1(R) = min (R(s), R(s)). (2)

The minimization is with respect to the same linear param-

eters as in the point-matching method.

For ease of presentation, application will be indicated just

for the one illustrative example. However, it is left as obvious

that the basic criterion can be applied to a wide variety of

scattering problems in any number of dimensions and any

variety of media or boundary shapes. For any linear scatter-

ing problem, the procedure results in the “inversion” of a

Hermitian positive-definite matrix, as will be described. The

method has also been applied successfully to eigenvalue prob-

lems, but as the matrix treatment is quite different, it will not

be considered here.

In contrast to the point-matching method, least squares is

a rigorously convergent procedure, and a proof of convergence

is given in Appendix II. If sharp corners are present, it is con-

tended that the least-squares approach avoids problems of

relative convergence and this is discussed in Appendix III.

II. THEORY

We assume that the whole of the relevant domain can be

divided into a number of regions such that complete expan-

sions can be written down for E and H in each region:

n= o

H,= -g .ni&<. (4)
*-o

Each pair of terms c&’ and ~ni satisfy Maxwell’s equations

over the ith region. The ‘(boundary residual” can be defined

along any boundaries between, say, regions i and j as the four-

vector ((E~i— l?i~), Z. (Ht; —Hj)), where Et; denotes the com-

ponent of E; tangential to the boundary surface. These dis-

continuities in tangential field (Eti —E/) and (Hti —H$) are

precisely those that must vanish in order to yield a solution

satisfying the usual boundary conditions. This boundary

residual is chosen so that (if necessary apart from any edge or

radiation conditions) the vanishing of the residual forms a

necessary and sufficient condition for the unique physical

solution to the problem. Z is some convenient positive value

of impedance; later we will find considerable advantage in

varying Z. If region i touches a conductor, the latter could be

considered as region-j and one would naturally use (.?lii, O) as

the residual at the conductor surface. By this choice Et~n
would be forced to vanish at the conducting surface but no

restriction would be made on Ht~n.Similarly, at a magnetic

wall (O, Z. Hti) would be a suitable residual.

A Hermitian form in a’s can now be defined as

FN = F(ao, al, . 0 ., aN)

JI= ( E,’– Et~]’+ z’. lH,’– H,~]’). w(.$). ds (5)
$s

where W(s) may be chosen as a convenient positive weighting

function and integration is over all boundaries with residuals.

W(s) has been taken as 1 throughout examples in this paper.

FN can be expressed in matrix form as

FN = a*Aa (6)

where a is a column vector with the a’s of (3) and (4) from the

various regions as elements. For the scattering problem, one

element of a (say UO) is associated with the incident wave and

arises in the expansions for one or more of the regions.

To obtain an approximate numerical solution to the prob-

lem, we truncate the expansions of (3) and (4) and apply the

least-squares criterion, viz., for the given incident wave and

the chosen truncated series expansions and weighting func-

tion, we seek the minimum to the Hermitian form of boundary

residual of (5). Generally our criterion can be expressed in

matrix form as

{)a*Aa
min —

a*Ba

where

a’ = (aO, al, - 0 . , aN).

A and B may be partitioned as follows:

()
U*

A= ‘0
UC

10
B=

()00”

(7)

(8)

(9)

(10)

The prime is used to denote transpose and the asterisk con-

j ugate transpose.

It is shown in Appendix I that the minimum criterion of

(7) reduces to the following:

Cx = v. (11)

The solution of this equation gives in x the required approx-

imate coefficients an i of the field expansions in (3) and (4).
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Fig. 1. Scattering at a capacitive iris in parallel plate waveguide.

The Hermitian and positive-definite properties of C to-

gether allow use of perhaps the fastest possible algorithm for

matrix inversion [5], viz., LU decomposition by Choleski’s

method, without pivoting. The use of Choleski rather than

Gauss decomposition alone halves the computing time,

besides the avoidance of pivoting. Storage requirements of

the matrix and its triangular form are also half those of the

Gauss method.

III. APPLICATION

Results of just one illustrative example are given, viz., the

capacitive iris of parallel plate transmission, which has been

studied extensively [6]- [8]. In Fig. 1, a TEM wave is inci-

dent on the conducting iris, which extends halfway across the

space between the parallel plates. The scattered waves are

described in terms of the usual TEM and TM mocles, so that

in the region z <0 we have the transverse fields approximated

by

Ev = CXo+oexp (–j@Oz)

+ ~ am. cos (mmy/b)
m=o

20. Hz = – ao+. exp (–j/30z)

&f

exp (-fmz) (12)

+ ~ a~. Y~.cos (winy/b). exp (y~z) (13)
m=o

where the wave amplitudes are aO+ of the incident wave, CKO

of the reflected TEM wave, and al . . 0aM of the reflected

TM waves:

~. = j/ti(mA/2b)2 – 1 (14)

is the normalized admittance of the TM waves and ~.= 1.

Taking advantage of the physical symmetry plane [6], we

seek the a values for (12) and (13) consistent with electric

and magnetic walls at z = O, from y = b/2 to b and y = O to b/2,
respectively. A suitable Hermitian form is chosen to give, for

(7),

{s

b sb[2

min F. E,. Eu*dy + Zoz
}

Hz. Hs*dy
b12 o

/{so+.aO+*) . (15)

The weighting factor W(s) of (5) has been taken as unity and,

for numerical convenience, Z is taken as ZO (the free-space

wave impedance) with F as the dimensionless positive constant

which we can choose. The vanishing of this form (IS) is a nec-

essary and (except for the edge condition) sufficient condition

for the exact physical solution to the problem. Substituting

(12) and (13) into (15) and putting a’= (ao+,ao,al,, . . . . aM)
gives explicit expressions for the elements of matrix C

and v of (11). Computer solution of this equation gives the

required approximate sol ution for the scattering parameters

F=
z 0- , 1 1 1 1 1 1 1

“Exac!” sdutlon
I

- 032

15–

B
10–

Fig. 2. Normalized susceDtance B and its dependence on matrix order
M and elect~ic/magnetic weighting factor F.
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Fig. 3. P-condition number of matrix for inversion (with M= 30) and

its dependence on electric/magnetic weighting factor F.

C@ al, . . . > CYlr. Solutions are given in Fig. 2 for /3/A= 0.4,

plotting the normalized susceptance B against M, where

Y +jl? = 2(1 – ao)/(1 + so). (16)

M is plotted on a reciprocal scale to permit better visual

extrapolation to M = co. Curves are given for different values

of F and it can be seen that the larger F values give a gen-

erally decreasing upper bound and conversely for lower F
values. This can be associated with Schwinger’s variational

bounds [6], [7], [9], the extreme values of F corresponding to

greater weighting to the electric or magnetic walls [see (15)].

In solving the matrix (11), iterative improvement [IO]

was used, and so gave an estimate of the P-condition number

[11] of matrix C. This is plotted in Fig. 3, against F (for

M= 30) and it can be seen that C is best conditioned for the

near-optimum value of F from the point of rapid convergence

with M (see Fig. 2). This is consistent with the condition num-

ber indicating the “best” choice of basis functions. As the

optimum F can be approximated well with small M values,

one can approach the exact result by increasing Ill (and com-
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Fig.4. Minimum of the Hermitian form and itsdependence on matrix

M and electric/magnetic weighting factor F.

puting time as l!13) with the most favorable convergence, so

offering the possibility of considerable saving of computer

time.

Fig. 4 shows how the minimum of our Hermitian form

[(7) and(15)] decreases with matrix order ~forvarious F

values. A proof of this convergence is given in Appendix II

for the general problem.

Asa further test of theleast-squares approach, the same

capacitive iris problem was solved, not taking any advantage

of the physical symmetry. Separate expansions are used for

fields in z <O and in z>O. They are of the type of (12) and

(13), but with the summation to III in z <O and to iV in z >0.

The Hermitian form chosen for this problem is

fb(,Eq2+ ,E(2),2,dy+Jb’2(, E(l) _E(2),2

b[2 o

+ I Z,(H(’) – 11(2)) l’) dy/ I a,+ l’. (17)

No attempt was made to optimize the F constant of (15),

so that F was taken as unity in (17). Results with M = N are

identical to the earlier results assuming symmetry. Results

with M # N still converge, although convergence is generally

no faster than the earlier results, with min (M, N) giving the

number of parameters. In this case, one can see that the

higher order terms on just one side of the iris plane do not sig-

nificantly reduce the minimum of the Hermitian form. This

is just one example, illustrating what is contended and

proved generally in Appendix II; that convergence to the

physically correct solution is assured for the least-squares ap-

proach and (in contrast to point matching and Fourier mode

matching) is mot critically dependent on some point selection

or number of terms in a kernel approximation [s], [12]. This

problem is concerned with the edge condition, which is dis-

cussed in Appendix III. A check was made on the resulting

approximate transverse dependence of fields and the decay

rate with n of the ani coefficients. These are advisable checks

of “stability” or “relative convergence” and of satisfaction of

edge conditions [8], [12]. They were always found to be

satisfactory, even with the purposely unbalanced expansion

sets of (17).

For ease of presentation, the iris problem has been

illustrated in the simplest manner. More rapid numer-

ical convergence could be obtained (at the cost of com-

plication) in various ways. For instance, use of the expansion

Zany+* cos (n+~)O centered on the iris edge would satisfy

precisely the edge condition, but would require more compli-

cated boundary rekiduals. The boundary residual could be

defined along the waveguide walls and at a “joining-up” of

the above expansion either near to the iris with the expansions

of (12) and (13) or in the far distance with the incident and

the reflected waves.

IV. DISCUSSION

The least-squares boundary residual method has been

proposed, illustrated with a well-known capacitive iris prob-

lem, and discussed in comparison with the point-matching

technique. Both methods are versatile in being able to join up

a patchwork of regions with arbitrary complete expansions.

For point matching this is discussed by Bates and Ng [19]

and by Belle and Fye [20]. For both methods, it is believed

that any edge conditions are best satisfied by separate, ap-

propriate, complete expansions for each corner, as discussed

in Appendix III.

Methods could be used intermediate between point match-

ing and least squares, having more boundary points than free

linear parameters and then solving the overdetermined sys-

tem. It is believed that this would yield neither of the advan-

tages of the two extreme cases of point matching (with N

parameters and N points) and least squares (with N param-

eters and co points). These advantages are the former’s sim-

plicity and the latter’s guaranteed convergence. This guaran-

tee of convergence for the least-squares method is put forward

as perhaps its most important merit. Other advantages pro-

posed for least-squares are 1) the flexibility of the electric/

magnetic weighting factor F (see Section III) and 2) the use

of a faster and more compact matrix inversion algorithm (see

Section II).

APPENDIX I

REDUCTION OF LEAST-SQUARES CRITERION

TO MATRIX INVERSION PROBLEM

We wish to prove that the minimum of (7 is attained

explicitly via the solution of (11) and also to derive the min-

imum value. Although related theorems are in the literature

[13], [14], the special form of our matrix B allows some brief

and simple treatment. From (7)–(10) we consider

a*(B — L4)a = O (18)

as a regular pencil of Hermitian forms [15, pp. 331-338].

A and B are, by definition, Hermitian, and A is positive definite

[or semidefinite if the exact field solutions are expressible in

terms of the finite number of terms of (3) and (4)]. It is known

[15, p. 322] that for such a regular pencil the maximum value

of (a*Ba/a*Aa) is the largest eigenvalue Xo of (18), which is

attained when a is the associated eigenvector UO. Because of

the special form of B (10), (18) has an N-fold degenerate

eigenvalue zero and only one nonzero (positive) eigen-

value Ao. Moreover, we can choose u1’ = (O, 1, 0, . . . , O),

UZ’=(0, O, 1, . 0 0 , O), . . . , 2fJ= (0, O, 0, . . . , 1) aseigen-

vectors of the degenerate eigenvalue. ao is now defined as
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being orthogonal to each of these eigenvectorsul, u2, o . . ,uN

so that

()00
~ ~ (B– XOA)aO=O (19)

where Zis the iVth-order unit matrix. Putting ao’== (1, —x’),

(19) reduces to

cW)=c) (20)

and so to

Cx= v. (21)

Theassociated minimum to (7) is

l/ALl = (1, –x*) c3(-:)
/(l> -x*)(::)(-:)

=V()-v *.X. (22)

APPENDIX II

PROOF OF CONVERGENCE

We wish to prove that as the number of terms is increased

inthevarious expansions of (3) and (4), theresulting approx-

imate E and H fields will approach the physically correct

fields. Continuing from (3) and (4), these expansions are

taken to recomplete over each relevant (ith) region, includ-

ing the boundaries where residuals have been defined. There-

fore, if E and H are the physically exact (unknown) field solu-

tions at the boundaries, then for any e >0 there is some JP1

such that

(23)

and

Z.j(H’– q] <, (24)

if all summation upper limits in (3) and (4) are greater than

M [the norms may be defined as in (5)]. Similarly, (23) and

(24) apply with i’s replaced by j’s, these being the i, j super-

scripts introduced after (4). By the triangle inequality (16),

and

(25)

(26)

From these two equations, it follows that the Hermitian form

FN of (5) must be less than 862. This is true for FN with the

specific (unknown) Fourier coefficients of the an. It therefore

follows that the minimum value of FN for all am [as evaluated

explicitly via (7)–(11) ] must be less than 8C2 and so con-

verge to zero. The boundary residual was defined in Section

II so that the vanishing of the Hermitian form FN was neces-

sary and sufficient to give the physically correct field. If, then,

the expansions of (3) and (4) are complete but not overcom-

plete (viz., do not contain a proper subset that is complete),

then there are unique coefficients to these equations that give

the physically correct fields. It follows that the an; evaluated

from (7)–(11) must tend to these same correct values of ani.

APPENDIX III

SATISFACTION OF THE EDGE CONDITION

In Appendix II, convergence of the least-squares method

is shown, assuming uniqueness of the fields and their Fourier

coefficients. If complete but not overcomplete expansions are

used in the various regions, uniqueness of the coefficients fol-

lows from uniqueness of the fields. However, the usual diffi-

culty in ensuring uniqueness of the fields is in satisfying the

edge condition [17 ] and this gives rise to the relative conver-

gence difficulty [8], [18] in mode matching and in point

matching. This nonuniqueness of field applies to any method

that does not take account of the edge condition, either

explicitly or implicitly. We now indicate how the least-squares

method can approach the edge problem.

The first scheme (and in many ways the most satisfactory)

is to arrange each material corner with a singular field to be in

a region with complete expansions [(3) and (4)] that explicitly

satisfy the edge condition. This is illustrated in the final para-

graph of Section III. In principle, this is a straightforward

approach for both the least-squares and point-matching

methods, although it would be complicated to implement with

more than a few corners.

An alternative scheme (as used in the capacitive iris

examples) is to arrange for every edge that the boundary

residual is defined along some boundary which terminates at

the edge. A general consideration of this approach would be

tedious, dealing with different types of corners and of chosen

boundaries of integration, etc. But briefly, one distinction

between the physical and nonphysical solutions to the posed

problem is that only the former satisfies the edge condition;

of all possible solutions that precisely satisfy the boundary

conditions, the physical solution must have a lower order of

spatial singularity near the edges than any nonphysical solu-

tion in order to be the unique solution with bounded total

energy near the edges [17 ]. It follows that when one seeks a

minimum over all an of a Hermitian form that includes bound-

ary residuals near all edges, the physical solution must give a

smaller contribution to the form near any edges than any non-

physical fields and so will be preferred in the minimization cri-

terion.
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Finite Element Analysis of Planar Microwave Networks

P. SILVESTER

Abstract—The port admittance matrix of a planar network is
formulated in terms of certain harmonic functions related to the port
voltages and the network geometry, together with the natural modes
of the network with all ports shorted. The necessary harmonic func-
tions and eigenfunctions are found using a finite element technique,
for which general-purpose computer programs already exist. An ad-
vantage of the method is that the admittance matrix appears in
partial-fraction form with geometric data separated from frequency,
leading to inexpensive computations where recalculation at various
frequencies is required.

INTRODUCTION

P
LANAR multiport microwave networks offer the de-

1
signer considerable freedom as compared to stripline

circuitry, not only in regard to physical size and shape,

but more importantly, to such electrical characteristics as

impedance level. Considerable interest has therefore arisen in

their analysis and design in recent years [1].

A very comprehensive theory, leading to a partial-fraction

representation of the admittance matrices of the general

N-port, was given by Civalleri and Ridella [2]. In applica-

tions, the full generality of this theory is not always required;

a simplified version, based on a somewhat more idealized for-

mulation of the problem, is often entirely adequate as demon-

strated by the results of Bianco and Ridella [3]. Their anal-

ysis, however, was restricted to rectangular circuits, for which

certain eigenfunctions are analytically known. While interest-

ing in pointing out certain possible network behavior patterns,

restriction to rectangular plates robs the designer in large

measure of precisely that flexibility promised by planar net-

works. An extension of their formulation or an alternative

formulation not so geometrically restrictive would therefore

seem desirable. An alternative approach published concur-
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rently by Okoshi and Miyoshi [4] formulated the field prob

lem of the planar circuit in terms of a Fredholm integral equa.

tion—similarly to Spiel man [5 ]—which was subsequently

solved by a collocation method. This approach lends itself

well to computational implementation and does not involve

undue geometrical constraints. A drawback of this technique,

however, is that the resulting network characterization (be it

a transfer matrix or an admittance matrix) is valid at only

one frequency; for any other frequency, the entire integral

equation analysis must be repeated.

The analysis given below is geometrically as little re-

stricted as the method of Okoshi and Miyoshi, but the net-

work admittance matrices which result are in partial-fraction

form. Consequently, it is only necessary to solve the field

problem for a given network once; there is no need for re-

peated analyses at different frequencies. Thus although the

new method differs fundamentally from those reported earlier,

it combines in one the advantages of both existing methods.

FORMULATION OF FIELD PROBLEM

For purposes of analysis, exactly the same idealizations

will be employed in this paper as in previous ones [3], [4].

The planar network will be assumed to consist of a highly con-

ductive plate placed on a dielectric substrate backed by a con-

ductive ground plane. Both the dielectric and the ground plate

are assumed infinite in extent and analvsis will be carried out

for the equivalent structure of two similar plates separated

by an infinite dielectric sheet of double thickness, as in Fig. 1.

It will be assumed that the plate lateral dimensions are very

much greater than the dielectric thickness, so that the electric

field may be assumed everywhere normal to the two plates,

E= lJZ. That is to say, fringing fields at plate edges are

ignored. The network is assumed to be fed by N-ports ar-

ranged along its periphery in such a way that no two-ports

have any points in common along the periphery, Within the


