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and 6.16-dB nominal coupling. The measured results at the
four output ports are within the specified toleration devia-
tions from nominal and flatness of coupling, which was the
case for all of the various power divider assemblies. Similar
characteristics for a five-way power divider are shown in Fig.
6. It is interesting to note how the coupling variation at any
output port depends on the particular path taken by the sig-
nal. For example, this explains why the coupling to port 3 of
the five-way power divider is so flat, the signal reaching this
port by coupling “across” the 1.52-dB coupler but “through”
the 3.12-dB coupler, hence being attenuated by couplings
whose frequency characteristics tend to cancel. Ports 2 and 4
of this assembly each have 6-dB nominal coupling, and the
shape of the coupling characteristics in these cases may be
explained on a similar basis.

The couplers and power dividers were constructed in
aluminum and their physical form and construction is indi-
cated in Fig. 7. All 23 power dividers met specification with
no empirical adjustments being required. This is an example
of how precise computer design for components facilitates
design of a complex assembly.

CONCLUSIONS

Branch-guide couplers having tight-coupling values may
be designed directly, without cascading two or more couplers
of looser coupling, by using the new design theory based on
Zolotarev functions. This method enables the internal imped-
ance levels of the main lines and branch guides to be opti-
mized so that they may be physically constructed, and this

may be carried out with very little theoretical deterioration in
directivity and VSWR. Almost perfect correlation between
theory (taking junction effects into account) and experiment
has been obtained in measurements performed on over 100
branch-guide couplers. The design of a complex matched
power divider network direct from computer programs to
hardware was described with complete agreement between
computations and measured results.
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A Least-Squares Boundary Residual Method for the

Numerical Solution of Scattering Problems

J. BRIAN DAVIES

Abstract—An explicit least-squares criterion is put forward as an
alternative to the point-matching method of numerically solving
scattering problems. While being an established method of func-
tional approximation, it has been largely ignored in numerical ap-
proaches to electromagnetic scattering,

In contrast to point matching, the least-squares approach has a
rigorous proof of convergence. An electric/magnetic weighting factor
is found useful in optimizing convergence. Finally, it allows use of
perhaps the fastest and most compact matrix inversion algorithm.
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1. INTRODUCTION
i;ﬁ NEW NUMERICAL approach is proposed for solv-

ing problems of electromagnetic wave scattering. Its

justification and potential is described mainly by
comparison with the point-matching (or collocation) method,
which has received much attention lately.

In point matching, Fourier matching, and the proposed
least-squares approaches, advantage is taken of the fact that
one can easily satisfy the differential equations of the prob-
lem. By using, over each of a number of regions, truncated
series from complete expansions, the problem is reduced to
satisfying boundary conditions (and possibly edge or radiation
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conditions) over certain interfaces. These interfaces may be
physical ones, such as conducting or dielectric surfaces or
ones of mathematical convenience that “join up” different
regions each with its own complete expansion.

The boundary residual [1] we define around the boundary
as a function R(s) that is a linear combination of the total
electromagnetic field expansions in adjacent regions such that
the vanishing of R(s) is a necessary (and preferably sufficient)
condition for the unique physical solution to the problem.
Different criteria are now put forward to approximately
satisfy R(s)=0.

The simplest method is undoubtedly point matching [2],
where R(s) is made to vanish at a finite number of selected
points, so that

R(s1) = R(s3) = R(s3) - -+ = R(sy) = 0. 1)

Perhaps the fundamental difficulty with this method is the
tacit assumption of convergence with increasing number of
points. This is especially questionable with sharp corners, due
to their singular fields [3]. In the associated topic of interpo-
lation polynomials, it is known that the error can be un-
bounded when the equidistant points become dense even
when approximating a smooth bounded function [4]. Rela-
tive convergence [8] can also cause difficulties so that gen-
eral application of the method seems rather precarious.

The proposed “least-squares boundary residual” method is
to require that for any given set of truncated series, the resid-
ual be minimized in the usual least-squares sense over the
boundary, viz.,

I(R) = min (R(s), R(s))- 2

The minimization is with respect to the same linear param-
eters as in the point-matching method.

For ease of presentation, application will be indicated just
for the one illustrative example. However, it is left as obvious
that the basic criterion can be applied to a wide variety of
scattering problems in any number of dimensions and any
variety of media or boundary shapes. For any linear scatter-
ing problem, the procedure results in the “inversion” of a
Hermitian positive-definite matrix, as will be described. The
method has also been applied successfully to eigenvalue prob-
lems, but as the matrix treatment is quite different, it will not
be considered here.

In contrast to the point-matching method, least squares is
a rigorously convergent procedure, and a proof of convergence
is given in Appendix I1. If sharp corners are present, it is con-
tended that the least-squares approach avoids problems of
relative convergence and this is discussed in Appendix 1I1.

I1. THEORY

We assume that the whole of the relevant domain can be
divided into a number of regions such that complete expan-
sions can be written down for E and H in each region:

Ei =3 ot ®
n=0

Hi= ), e’ 4
n=0

Each pair of terms &,* and ¢ satisfy Maxwell’s equations
over the 7th region. The “boundary residual” can be defined
along any boundaries between, say, regions 7 and j as the four-
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vector ((Eif—EJ), Z-(H:— H)), where E,* denotes the com-
ponent of E? tangential to the boundary surface. These dis-
continuities in tangential field (E;*—E,%) and (H;/— H/) are
precisely those that must vanish in order to yield a solution
satisfying the usual boundary conditions. This boundary
residual is chosen so that (if necessary apart from any edge or
radiation conditions) the vanishing of the residual forms a
necessary and sufficient condition for the unique physical
solution to the problem. Z is some convenient positive value
of impedance; later we will find considerable advantage in
varying Z. If region 7 touches a conductor, the latter could be
considered as region j and one would naturally use (£, 0) as
the residual at the conductor surface. By this choice Eiun
would be forced to vanish at the conducting surface but no
restriction would be made on Hi,,. Similarly, at a magnetic
wall (0, Z- H;*) would be a suitable residual.
A Hermitian form in a’s can now be defined as

Fy = F(ao, @1, - * -, an)

=f (] Eji— Etjlz + Z2 | Hi — Hﬂ']2)-W(s)-ds (5)
s

where W (s) may be chosen as a convenient positive weighting
function and integration is over all boundaries with residuals.
W(s) has been taken as 1 throughout examples in this paper.
Fy can be expressed in matrix form as

Fy = a*Aa (6)

where @ is a column vector with the a’s of (3) and (4) from the
various regions as elements. For the scattering problem, one
element of a (say a¢) is associated with the incident wave and
arises in the expansions for one or more of the regions.

To obtain an approximate numerical solution to the prob-
lem, we truncate the expansions of (3) and (4) and apply the
least-squares criterion, viz., for the given incident wave and
the chosen truncated series expansions and weighting func-
tion, we seek the minimum to the Hermitian form of boundary
residual of (5). Generally our criterion can be expressed in

matrix form as
. (a*Aa
min { } (7y
a*Ba

‘y aN)- (8)

A and B may be partitioned as follows:
a=("") ©)
v ¢
(o o)
B = .
0 O

The prime is used to denote transpose and the asterisk con-
jugate transpose.

It is shown in Appendix I that the minimum criterion of
(7) reduces to the following:

where

a = (00, a, -

(10)

(11)

The solution of this equation gives in x the required approx-
imate coefficients a,* of the field expansions in (3) and (4).

Cx =v.
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Fig. 1. Scattering at a capacitive iris in parallel plate waveguide.

The Hermitian and positive-definite properties of C to-
gether allow use of perhaps the fastest possible algorithm for
matrix inversion [5], viz., LU decomposition by Choleski’s
method, without pivoting. The use of Choleski rather than
Gauss decomposition alone halves the computing time,
besides the avoidance of pivoting. Storage requirements of
the matrix and its triangular form are also half those of the
Gauss method.

I11. APPLICATION

Results of just one illustrative example are given, viz., the
capacitive iris of parallel plate transmission, which has been
studied extensively [6]~[8]. In Fig. 1, a TEM wave is inci-
dent on the conducting iris, which extends halfway across the
space between the parallel plates. The scattered waves are
described in terms of the usual TEM and TM modes, so that

in the region z <0 we have the transverse fields approximated
by

E, = agt-exp (—jBo2)

+ D am-cos (may/b) - exp (Ym2)

m=0

Zy-H, = — agt-exp (‘—]'BOZ)

(12)

+ > am- Vin-cos (mmy/b) -exp (vmz) (13)

m=0

where the wave amplitudes are ag™ of the incident wave, ay
of the reflected TEM wave, and a; -+ + + aar of the reflected
TM waves:

Vi = j/+/(m\/2b)* — 1 (14)

is the normalized admittance of the TM waves and V,=1.
Taking advantage of the physical symmetry plane [6], we
seek the a values for (12) and (13) consistent with electric
and magnetic walls at2=0, from y=5/2 to b and y=0 to b/2,
respectively. A suitable Hermitian form is chosen to give, for

(7)1

b/2

5
min {F f E,-E*dy + Z,? H,-Hx*dy}
572

/{0[0+'O(4)+*}. (15)

The weighting factor W(s) of (5) has been taken as unity and,
for numerical convenience, Z is taken as Zo (the free-space
wave impedance) with F as the dimensionless positive constant
which we can choose. The vanishing of this form (15) is a nec-
essary and (except for the edge condition) sufficient condition
for the exact physical solution to the problem. Substituting
(12) and (13) into (15) and putting @’ = (ae™, @o, @y, * * -, anr)
gives explicit expressions for the elements of matrix C
and v of (11). Computer solution of this equation gives the
required approximate solution for the scattering parameters
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Fig. 2. Normalized susceptance B and its dependence on matrix order
M and electric/magnetic weighting factor F.
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Fig. 3. P-condition number of matrix for inversion (with M =30) and
its dependence on electric/magnetic weighting factor F.
@, 0, * * *, ay. Solutions are given in Fig. 2 for 8/A=0.4,

plotting the normalized susceptance B against M, where
YV +37B = 2(1 — a)/(1 + ). (16)

M is plotted on a reciprocal scale to permit better visual
extrapolation to M = «. Curves are given for different values
of F and it can be seen that the larger F values give a gen-
erally decreasing upper bound and conversely for lower F
values. This can be associated with Schwinger's variational
bounds [6], [7], [9], the extreme values of F corresponding to
greater weighting to the electric or magnetic walls [see (15)].

In solving the matrix (11), iterative improvement [10]
was used, and so gave an estimate of the P-condition number
[11] of matrix C. This is plotted in Fig. 3, against F (for
M = 30) and it can be seen that C is best conditioned for the
near-optimum value of F from the point of rapid convergence
with M (see Fig. 2). This is consistent with the condition num-
ber indicating the “best” choice of basis functions. As the
optimum F can be approximated well with small M values,
one can approach the exact result by increasing M (and com-



102

T—T 7Tt

Olf

Mimimum of Hermution form

ool L : [ S|
10 50 100

Fig. 4. Minimum of the Hermitian form and its dependence on matrix
M and electric/magnetic weighting factor F.

puting time as J?) with the most favorable convergence, so
offering the possibility of considerable saving of computer
time.

Fig. 4 shows how the minimum of our Hermitian form
[(7) and (15)] decreases with matrix order M for various F
values. A proof of this convergence is given in Appendix II
for the general problem.

As a further test of the least-squares approach, the same
capacitive iris problem was solved, not taking any advantage
of the physical symmetry. Separate expansions are used for
fields in 2<0 and in 2>0. They are of the type of (12) and
(13), but with the summation to 3 in 2<0 and to N in z>0.
The Hermitian form chosen for this problem is

b b/2
(B0 + | B@Pay+ [ (| B0 ~ Eo !
0

b/2
+ | Z(H® — H®) ) dy/| s | (A7)

No attempt was made to optimize the F constant of (15),
so that F was taken as unity in (17). Results with M =N are
identical to the earlier results assuming symmetry. Results
with M £ N still converge, although convergence is generally
no faster than the earlier results, with min (M, N) giving the
number of parameters. In this case, one can see that the
higher order terms on just one side of the iris plane do not sig-
nificantly reduce the minimum of the Hermitian form. This
is just one example, illustrating what is contended and
proved generally in Appendix II; that convergence to the
physically correct solution is assured for the least-squares ap-
proach and (in contrast to point matching and Fourier mode
matching) is not critically dependent on some point selection
or number of terms in a kernel approximation [8], [12]. This
problem is concerned with the edge condition, which is dis-
cussed in Appendix III. A check was made on the resulting
approximate transverse dependence of fields and the decay
rate with % of the a,® coefficients. These are advisable checks
of “stability” or “relative convergence” and of satisfaction of
edge conditions [8], [12]. They were always found to be
satisfactory, even with the purposely unbalanced expansion
sets of (17).
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For ease of presentation, the iris problem has been
illustrated in the simplest manner. More rapid numer-
ical convergence could be obtained (at the cost of com-
plication) in various ways. For instance, use of the expansion
2T na2(kr) cos (n+%)0 centered on the iris edge would satisfy
precisely the edge condition, but would require more compli-
cated boundary residuals. The boundary residual could be
defined along the waveguide walls and at a “joining-up” of
the above expansion either near to the iris with the expansions
of (12) and (13) or in the far distance with the incident and
the reflected waves.

IV. DiscussioN

The least-squares boundary residual method has been
proposed, illustrated with a well-known capacitive iris prob-
lem, and discussed in comparison with the point-matching
technique. Both methods are versatile in being able to join up
a patchwork of regions with arbitrary complete expansions.
For point matching this is discussed by Bates and Ng [19]
and by Bolle and Fye [20]. For both methods, it is believed
that any edge conditions are best satisfied by separate, ap-
propriate, complete expansions for each corner, as discussed
in Appendix III.

Methods could be used intermediate between point match-
ing and least squares, having more boundary points than free
linear parameters and then solving the overdetermined sys-
tem. It is believed that this would yield neither of the advan-
tages of the two extreme cases of point matching (with N
parameters and N points) and least squares (with N param-
eters and « points). These advantages are the former’s sim-
plicity and the latter’s guaranteed convergence. This guaran-
tee of convergence for the least-squares method is put forward
as perhaps its most important merit. Other advantages pro-
posed for least-squares are 1) the flexibility of the electric/
magnetic weighting factor F (see Section I1I) and 2) the use
of a faster and more compact matrix inversion algorithm (see
Section II).

ArPENDIX I

REDUCTION OF LEAST-SQUARES CRITERION
TO MATRIX INVERSION PROBLEM

We wish to prove that the minimum of (7 is attained
explicitly via the solution of (11) and also to derive the min-
imum value. Although related theorems are in the literature
[13], [14], the special form of our matrix B allows some brief
and simple treatment. From (7)—(10) we consider

a*(B — \N)a =0 (18)
as a regular pencil of Hermitian forms [15, pp. 331-338].
A and B are, by definition, Hermitian, and 4 is positive definite
[or semidefinite if the exact field solutions are expressible in
terms of the finite number of terms of (3) and (4) ]. Itis known
[15, p. 322] that for such a regular pencil the maximum value
of (a*Ba/a*Aa) is the largest eigenvalue Ay of (18), which is
attained when @ is the associated eigenvector ag. Because of
the special form of B (10), (18) has an N-fold degenerate
eigenvalue zero and only one nonzero (positive) eigen-
value Ao. Moreover, we can choose w'=(0, 1, 0, - - -, 0),
u'=(0,0,1,-+-,0), -+, uxy'=(,0,0, - -+, 1) as eigen-
vectors of the degenerate eigenvalue. @ is now defined as
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being orthogonal to each of these eigenvectors uy, us, - -
so that

.,uN

Y

where I is the Nth-order unit matrix. Putting @’ = (1, —x’),

(19) reduCeS to

Cx = v.

(20)

and so to

21)

The associated minimum to (7) is

1/x = (1, —x%) (j,o 1:) (—i)
/-0 o) ()

=gy — V*-x. (22)

AprENDIX II
ProoF oF CONVERGENCE

We wish to prove that as the number of terms is increased
in the various expansions of (3) and (4), the resulting approx-
imate E and H fields will approach the physically correct
fields. Continuing from (3) and (4), these expansions are
taken to be complete over each relevant (4th) region, includ-
ing the boundaries where residuals have been defined. There-
fore, if E and H are the physically exact (unknown) field solu-
tions at the boundaries, then for any €¢>0 there is some M
such that

[|E: — Ef| <e (23)

and

Z||H — H| <e (24)
if all summation upper limits in (3) and (4) are greater than
M [the norms may be defined as in (5)]. Similarly, (23) and
{24) apply with 7's replaced by j's, these being the %, j super-
scripts introduced after (4). By the triangle inequality (16),

|E: — E7| < 26 (25)
and

Z-||H — H|| < 2e. (26)
From these two equations, it follows that the Hermitian form
Fy of (5) must be less than 8¢ This is true for Fy with the
specific (unknown) Fourier coefficients of the a,. It therefore
follows that the minimum value of Fy for all a,, [as evaluated
explicitly via (7)-(11)] must be less than 8¢ and so con-
verge to zero. The boundary residual was defined in Section
II so that the vanishing of the Hermitian form Fy was neces-
sary and sufficient to give the physically correct field. If, then,
the expansions of (3) and (4) are complete but not overcom-
plete (viz., do not contain a proper subset that is complete),
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then there are unique coefficients to these equations that give
the physically correct fields. It follows that the a,’ evaluated
from (7)—-(11) must tend to these same correct values of a,’

ArpeEnpDix III
SATISFACTION OF THE EDGE CONDITION

In Appendix II, convergence of the least-squares method
is shown, assuming uniqueness of the fields and their Fourier
coefficients. If complete but not overcomplete expansions are
used in the various regions, uniqueness of the coefficients fol-
lows from uniqueness of the fields. However, the usual diffi-
culty in ensuring uniqueness of the fields is in satisfying the
edge condition [17] and this gives rise to the relative conver-
gence difficulty [8], [18] in mode matching and in point
matching. This nonuniqueness of field applies to any method
that does not take account of the edge condition, either
explicitly or implicitly. We now indicate how the least-squares
method can approach the edge problem.

The first scheme (and in many ways the most satisfactory)
is to arrange each material corner with a singular field to be in
aregion with complete expansions [(3) and (4) ] that explicitly
satisfy the edge condition. This is illustrated in the final para-
graph of Section IIIL. In principle, this is a straightforward
approach for both the least-squares and point-matching
methods, although it would be complicated to implement with
more than a few corners.

An alternative scheme (as used in the capacitive iris
examples) is to arrange for every edge that the boundary
residual is defined along some boundary which terminates at
the edge. A general consideration of this approach would be
tedious, dealing with different types of corners and of chosen
boundaries of integration, etc. But briefly, one distinction
between the physical and nonphysical solutions to the posed
problem is that only the former satisfies the edge condition;
of all possible solutions that precisely satisfy the boundary
conditions, the physical solution must have a lower order of
spatial singularity near the edges than any nonphysical solu-
tion in order to be the unique solution with bounded total
energy near the edges [17]. It follows that when one seeks a
minimum over all a, of a Hermitian form that includes bound-
ary residuals near all edges, the physical solution must give a
smaller contribution to the form near any edges than any non-
physical fields and so will be preferred in the minimization cri-
terion.
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Finite Element Analysis of Planar Microwave Networks

P. SILVESTER

Abstract—The port admiftance matrix of a planar network is
formulated in terms of certain harmonic functions related to the port
voltages and the network geometry, together with the natural modes
of the network with all ports shorted. The necessary harmonic func-
tions and eigenfunctions are found using a finite element technique,
for which general-purpose computer programs already exist. An ad-
vantage of the method is that the admittance matrix appears in
partial-fraction form with geometric data separated from frequency,
leading to inexpensive computations where recalculation at various
frequencies is required.

INTRODUCTION

LANAR multiport microwave networks offer the de-
Psigner considerable freedom as compared to stripline

circuitry, not only in regard to physical size and shape,
but more importantly, to such electrical characteristics as
impedance level. Considerable interest has therefore arisen in
their analysis and design in recent years [1].

A very comprehensive theory, leading to a partial-fraction
representation of the admittance matrices of the general
N-port, was given by Civalleri and Ridella [2]. In applica-
tions, the full generality of this theory is not always required;
a simplified version, based on a somewhat more idealized for-
mulation of the problem, is often entirely adequate as demon-
strated by the results of Bianco and Ridella [3]. Their anal-
ysis, however, was restricted to rectangular circuits, for which
certain eigenfunctions are analytically known. While interest-
ing in pointing out certain possible network behavior patterns,
restriction to rectangular plates robs the designer in large
measure of precisely that flexibility promised by planar net-
works. An extension of their formulation or an alternative
formulation not so geometrically restrictive would therefore
seem desirable. An alternative approach published concur-
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rently by Okoshi and Miyoshi [4] formulated the field prob
lem of the planar circuit in terms of a Fredholm integral equa-
tion—similarly to Spielman [5]—which was subsequently
solved by a collocation method. This approach lends itself
well to computational implementation and does not involve
undue geometrical constraints. A drawback of this technique,
however, is that the resulting network characterization (be it
a transfer matrix or an admittance matrix) is valid at only
one frequency; for any other frequency, the entire integral
equation analysis must be repeated.

The analysis given below is geometrically as little re-
stricted as the method of Okoshi and Miyoshi, but the net-
work admittance matrices which result are in partial-fraction
form. Consequently, it is only necessary to solve the field
problem for a given network once; there is no need for re-
peated analyses at different frequencies. Thus although the
new method differs fundamentally from those reported earljer,
it combines in one the advantages of both existing methods.

ForMULATION OF FIELD PROBLEM

For purposes of analysis, exactly the same idealizations
will be employed in this paper as in previous ones [3], [4].
The planar network will be assumed to consist of a highly con-
ductive plate placed on a dielectric substrate backed by a con-
ductive ground plane. Both the dielectric and the ground plate
are assumed infinite in extent and analvsis will be carried out
for the equivalent structure of two similar plates separated
by an infinite dielectric sheet of double thickness, as in Fig. 1.
It will be assumed that the plate lateral dimensions are very
much greater than the dielectric thickness, so that the electric
field may be assumed everywhere normal to the two plates,
E=1,E, That is to say, fringing fields at plate edges are
ignored. The network is assumed to be fed by N-ports ar-
ranged along its periphery in such a way that no two-ports
have any points in common along the periphery. Within the



